This is the title to an entry from the Engineering Windows 7 blog on MSDN. What it actually should be called is the Hardware Upgrade Index , because after all, it really doesn’t do much except tell the fanboys that they need another infusion of cash to upgrade their machines, and the poor idiot who is barely keeping up that his system needs to get to at least an ‘average’ score, or his use of the operating system will be less than wonderful. This, at the very same time, absolves Microsoft of any fault in this, excusing bad decisions, ineffective coding and needless bloat.

Though the scoring areas are the same, the ranges have changed. In Vista, the WEI scores ranged from 1.0 to 5.9. In Windows 7, the range has been extended upward to 7.9. The scoring rules for devices have also changed from Vista to reflect experience and feedback comparing closely rated devices with differing quality of actual use (i.e. to make the rating more indicative of actual use.) We know during the beta some folks have noticed that the score changed (relative to Vista) for one or more components in their system and this tuning, which we will describe here, is responsible for the change.

For a given score range, we hope our customers will be able to utilize some general guidelines to help understand the experiences a particular PC can be expected to deliver well, relatively speaking. These Vista-era general guidelines for systems in the 1.0, 2.0, 3.0, 4.0 and 5.0 ranges still apply to Windows 7. But, as noted above, Windows 7 has added levels 6.0 and 7.0; meaning 7.9 is the maximum score possible. These new levels were designed to capture the rather substantial improvements we are seeing in key technologies as they enter the mainstream, such as solid state disks, multi-core processors, and higher end graphics adapters. Additionally, the amount of memory in a system is a determining factor.

For these new levels, we’re working to add guidelines for each level. As an example for gaming users, we expect systems with gaming graphics scores in the 6.0 to 6.9 range to support DX10 graphics and deliver good frames rates at typical screen resolutions (like 40-50 frames per second at 1280×1024). In the range of 7.0 to 7.9, we would expect higher frame rates at even higher screen resolutions. Obviously, the specifics of each game have much to do with this and the WEI scores are also meant to help game developers decide how best to scale their experience on a given system. Graphics is an area where there is both the widest variety of scores readily available in hardwaren and also the widest breadth of expectations. The extremes at which CAD, HD video, photography, and gamers push graphics compared to the average business user or a consumer (doing many of these same things as an avocation rather than vocation) is significant.

Of course, adding new levels doesn’t explain why a Vista system or component that used to score 4.0 or higher is now obtaining a score of 2.9. In most cases, large score drops will be due to the addition of some new disk tests in Windows 7 as that is where we’ve seen both interesting real world learning and substantial changes in the hardware landscape.

With respect to disk scores, as discussed in our recent post on Windows Performance, we’ve been developing a comprehensive performance feedback loop for quite some time. With that loop, we’ve been able to capture thousands of detailed traces covering periods of time where the computer’s current user indicated an application, or Windows, was experiencing severe responsiveness problems. In analyzing these traces we saw a connection to disk I/O and we often found typical 4KB disk reads to take longer than expected, much, much longer in fact (10x to 30x). Instead of taking 10s of milliseconds to complete, we’d often find sequences where individual disk reads took many hundreds of milliseconds to finish. When sequences of these accumulate, higher level application responsiveness can suffer dramatically.

With the problem recognized, we synthesized many of the I/O sequences and undertook a large study on many, many disk drives, including solid state drives. While we did find a good number of drives to be excellent, we unfortunately also found many to have significant challenges under this type of load, which based on telemetry is rather common. In particular, we found the first generation of solid state drives to be broadly challenged when confronted with these commonly seen client I/O sequences.

An example problematic sequence consists of a series of sequential and random I/Os intermixed with one or more flushes. During these sequences, many of the random writes complete in unrealistically short periods of time (say 500 microseconds). Very short I/O completion times indicate caching; the actual work of moving the bits to spinning media, or to flash cells, is postponed. After a period of returning success very quickly, a backlog of deferred work is built up. What happens next is different from drive to drive. Some drives continue to consistently respond to reads as expected, no matter the earlier issued and postponed writes/flushes, which yields good performance and no perceived problems for the person using the PC. Some drives, however, reads are often held off for very lengthy periods as the drives apparently attempt to clear their backlog of work and this results in a perceived “blocking” state or almost a “locked system”. To validate this, on some systems, we replaced poor performing disks with known good disks and observed dramatically improved performance. In a few cases, updating the drive’s firmware was sufficient to very noticeably improve responsiveness.

To reflect this real world learning, in the Windows 7 Beta code, we have capped scores for drives which appear to exhibit the problematic behavior (during the scoring) and are using our feedback system to send back information to us to further evaluate these results. Scores of 1.9, 2.0, 2.9 and 3.0 for the system disk are possible because of our current capping rules. Internally, we feel confident in the beta disk assessment and these caps based on the data we have observed so far. Of course, we expect to learn from data coming from the broader beta population and from feedback and conversations we have with drive manufacturers.

For those obtaining low disk scores but are otherwise satisfied with the performance, we aren’t recommending any action (Of course the WEI is not a tool to recommend hardware changes of any kind). It is entirely possible that the sequence of I/Os being issued for your common workload and applications isn’t encountering the issues we are noting. As we’ve said, the WEI is a metric but only you can apply that metric to your computing needs.

(Of course the WEI is not a tool to recommend hardware changes of any kind) Of course not, we would never think that. It just could not be! (this is the part where the individual hardware manufacturers line up to pay tribute to Microsoft. ( and by tribute, I mean it in the traditions of the Roman Empire )

Though the scoring areas are the same, the ranges have changed. In Vista, the WEI scores ranged from 1.0 to 5.9. In Windows 7, the range has been extended upward to 7.9. The scoring rules for devices have also changed from Vista to reflect experience and feedback comparing closely rated devices with differing quality of actual use (i.e. to make the rating more indicative of actual use.) We know during the beta some folks have noticed that the score changed (relative to Vista) for one or more components in their system and this tuning, which we will describe here, is responsible for the change.

The change in maximum is to make certain those who just completed an upgrade cycle in the last 6 months won’t be left out of the little dance – there is always a need! Ever onward and upward!

For a given score range, we hope our customers will be able to utilize some general guidelines to help understand the experiences a particular PC can be expected to deliver well, relatively speaking. These Vista-era general guidelines for systems in the 1.0, 2.0, 3.0, 4.0 and 5.0 ranges still apply to Windows 7. But, as noted above, Windows 7 has added levels 6.0 and 7.0; meaning 7.9 is the maximum score possible. These new levels were designed to capture the rather substantial improvements we are seeing in key technologies as they enter the mainstream, such as solid state disks, multi-core processors, and higher end graphics adapters. Additionally, the amount of memory in a system is a determining factor.

For these new levels, we’re working to add guidelines for each level. As an example for gaming users, we expect systems with gaming graphics scores in the 6.0 to 6.9 range to support DX10 graphics and deliver good frames rates at typical screen resolutions (like 40-50 frames per second at 1280×1024). In the range of 7.0 to 7.9, we would expect higher frame rates at even higher screen resolutions. Obviously, the specifics of each game have much to do with this and the WEI scores are also meant to help game developers decide how best to scale their experience on a given system. Graphics is an area where there is both the widest variety of scores readily available in hardwaren and also the widest breadth of expectations. The extremes at which CAD, HD video, photography, and gamers push graphics compared to the average business user or a consumer (doing many of these same things as an avocation rather than vocation) is significant.

Of course, adding new levels doesn’t explain why a Vista system or component that used to score 4.0 or higher is now obtaining a score of 2.9. In most cases, large score drops will be due to the addition of some new disk tests in Windows 7 as that is where we’ve seen both interesting real world learning and substantial changes in the hardware landscape.

With respect to disk scores, as discussed in our recent post on Windows Performance, we’ve been developing a comprehensive performance feedback loop for quite some time. With that loop, we’ve been able to capture thousands of detailed traces covering periods of time where the computer’s current user indicated an application, or Windows, was experiencing severe responsiveness problems. In analyzing these traces we saw a connection to disk I/O and we often found typical 4KB disk reads to take longer than expected, much, much longer in fact (10x to 30x). Instead of taking 10s of milliseconds to complete, we’d often find sequences where individual disk reads took many hundreds of milliseconds to finish. When sequences of these accumulate, higher level application responsiveness can suffer dramatically.

With the problem recognized, we synthesized many of the I/O sequences and undertook a large study on many, many disk drives, including solid state drives. While we did find a good number of drives to be excellent, we unfortunately also found many to have significant challenges under this type of load, which based on telemetry is rather common. In particular, we found the first generation of solid state drives to be broadly challenged when confronted with these commonly seen client I/O sequences.

An example problematic sequence consists of a series of sequential and random I/Os intermixed with one or more flushes. During these sequences, many of the random writes complete in unrealistically short periods of time (say 500 microseconds). Very short I/O completion times indicate caching; the actual work of moving the bits to spinning media, or to flash cells, is postponed. After a period of returning success very quickly, a backlog of deferred work is built up. What happens next is different from drive to drive. Some drives continue to consistently respond to reads as expected, no matter the earlier issued and postponed writes/flushes, which yields good performance and no perceived problems for the person using the PC. Some drives, however, reads are often held off for very lengthy periods as the drives apparently attempt to clear their backlog of work and this results in a perceived “blocking” state or almost a “locked system”. To validate this, on some systems, we replaced poor performing disks with known good disks and observed dramatically improved performance. In a few cases, updating the drive’s firmware was sufficient to very noticeably improve responsiveness.

To reflect this real world learning, in the Windows 7 Beta code, we have capped scores for drives which appear to exhibit the problematic behavior (during the scoring) and are using our feedback system to send back information to us to further evaluate these results. Scores of 1.9, 2.0, 2.9 and 3.0 for the system disk are possible because of our current capping rules. Internally, we feel confident in the beta disk assessment and these caps based on the data we have observed so far. Of course, we expect to learn from data coming from the broader beta population and from feedback and conversations we have with drive manufacturers.

For those obtaining low disk scores but are otherwise satisfied with the performance, we aren’t recommending any action (Of course the WEI is not a tool to recommend hardware changes of any kind). It is entirely possible that the sequence of I/Os being issued for your common workload and applications isn’t encountering the issues we are noting. As we’ve said, the WEI is a metric but only you can apply that metric to your computing needs.

Earlier, I made note of the fact that our new levels, 6 and 7, were added to recognize the improved experiences one might have with newer hardware, particularly SSDs, graphics adapters, and multi-core processors. With respect to SSDs, the focus of the newer tests is on random I/O rates and their avoidance of the long latency issues noted above. As a note, the tests don’t specifically check to see if the underlying storage device is an SSD or not. We run them no matter the device type and any device capable of sustaining very high random I/O rates will score well.

For graphics adapters, both DX9 and DX10 assessments can be run now. In Vista, the tests were specific to DX9. To obtain scores in the 6 or 7 ranges, a graphics adapter must obtain very good performance scores, support DX10 and the driver must be a WDDM 1.1 driver (which you might have noticed are being downloaded in beta during the Windows 7 beta). For WDDM 1.0 drivers, only the DX9 assessments will be run, thus capping the overall score at 5.9.

For multi-core processors, both single threaded and multi-threaded scenarios are run. With levels 6 and 7, we aim to indicate that these systems will be rarely CPU bound for typical use and quite suitable for demanding processing tasks and multi-tasking. As examples, we anticipate many quad core processors will be able to score in the high 6 to low 7 ranges, and 8 core systems to be able to approach 7.9. The scoring has taken into account the very latest micro-processors available.

For many key hardware partners, we’ve of course made available additional details on the changes and why they were made. We continue to actively work with them to incorporate appropriate feedback.

Earlier, I made note of the fact that our new levels, 6 and 7, were added to recognize the improved experiences one might have with newer hardware, particularly SSDs, graphics adapters, and multi-core processors. With respect to SSDs, the focus of the newer tests is on random I/O rates and their avoidance of the long latency issues noted above. As a note, the tests don’t specifically check to see if the underlying storage device is an SSD or not. We run them no matter the device type and any device capable of sustaining very high random I/O rates will score well.

For graphics adapters, both DX9 and DX10 assessments can be run now. In Vista, the tests were specific to DX9. To obtain scores in the 6 or 7 ranges, a graphics adapter must obtain very good performance scores, support DX10 and the driver must be a WDDM 1.1 driver (which you might have noticed are being downloaded in beta during the Windows 7 beta). For WDDM 1.0 drivers, only the DX9 assessments will be run, thus capping the overall score at 5.9.

For multi-core processors, both single threaded and multi-threaded scenarios are run. With levels 6 and 7, we aim to indicate that these systems will be rarely CPU bound for typical use and quite suitable for demanding processing tasks and multi-tasking. As examples, we anticipate many quad core processors will be able to score in the high 6 to low 7 ranges, and 8 core systems to be able to approach 7.9. The scoring has taken into account the very latest micro-processors available.

For many key hardware partners, we’ve of course made available additional details on the changes and why they were made. We continue to actively work with them to incorporate appropriate feedback.

It undoubtedly also is heavily influenced by the hardware suppliers of the world, as it is widely known that absolutely everyone must upgrade, in lockstep, with the either the Intel tick-tock model, or the Windows ‘we need some more money in the coffers’ model. The customer always has choice;  which is it, Microsoft 3 year plan or Intel 2 year plan?

Digg This